about a cubic meter per minute, which works out to 500 meters of water per minute
Rain is usually calculated per m2.
1 m3 per minute is 60 m3 per hour.
10k mm rain per hour is 1 liter x 10k = 10 m3 per hour.
So I make it out to about a sixth of your firehose. Which still makes it way worse than any kind of weather you would call rain.
I’m not sure what other analogy would be closer?
Edit: Corrected to the quote I actually responded to.
No, it is a one dimensional number(excluding time) that works for any area. If you put two containers down in a rain, one 1m^2 area and one 1dm^2 area, both will collect water up to the same level.
Yes there will be 100 times as much water in total in the large container, but the height when spread in the container will be the same in both.
concentrating the water fall from a 1m^2 area into an area the size of a firehose is not how rain works. Rain happens spread out over the whole area.
When you calculate the volume, it’s usually per m2. I quoted the wrong part.
So when you compare to a firehose, you must compare the volumes.
Tightly packed firehoses wouldn’t make any sense, because that’s not how firehoses work.
At least that was my interpretation.
Rain is usually calculated per m2.
1 m3 per minute is 60 m3 per hour.
10k mm rain per hour is 1 liter x 10k = 10 m3 per hour.
So I make it out to about a sixth of your firehose. Which still makes it way worse than any kind of weather you would call rain.
I’m not sure what other analogy would be closer?
Edit: Corrected to the quote I actually responded to.
No, it is a one dimensional number(excluding time) that works for any area. If you put two containers down in a rain, one 1m^2 area and one 1dm^2 area, both will collect water up to the same level.
Yes there will be 100 times as much water in total in the large container, but the height when spread in the container will be the same in both.
concentrating the water fall from a 1m^2 area into an area the size of a firehose is not how rain works. Rain happens spread out over the whole area.
When you calculate the volume, it’s usually per m2. I quoted the wrong part.
So when you compare to a firehose, you must compare the volumes.
Tightly packed firehoses wouldn’t make any sense, because that’s not how firehoses work.
At least that was my interpretation.
a cubic meter per minute is what the firehose outputs, so thats over approximately a dm^2 not an m^2
which comes out to a 500m high column